为什么选择该系统? -集各家之长为我所用,系统化的数据及分析、整合
据您的需求量身定制的方案帮助您确定合适的motionmonitor™系统配置(台式机或各种便携式笔记本配置中选择)
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
未来数年运动生物力学的研究方法发展趋势可归纳为: 1.竞技体育技术测试研究方法的发展趋势,是向着适合于各个运动项目需要的、能现场及时反馈测试分析结果的仪器设备与方法和提供详细测试分析报告的仪器设备与方法两条并行的途径发展。 (1)三维跟踪摄像、摄影测量方法的推广; (2)摄像、摄影精度逐步提高; (3)三维摄像、摄影测量逐步普及; (4)影像测量点识别、采集的自动化; (5)足底压力分布测试三维化; (6)运动技术测试仪器专项化、反馈快速化; (7)数学力学模型和人体运动仿真使用化等;以后主要是对经典力学分析、力学模型研究、运动技术化、人体运动仿真、肌肉力学模型等方面进行重点研究,使研究方法和测量手段进一步向科学化和合理化发展。2.关于模型参数的选择和确定,取决于参数的功能,即区分敏感参数和常规参数,并且使这些参数定量化和具有可比性。关于数据采集,首先是数据采集的标准化,然后是对数据进行力学分析和评价,更重要的是对所采集的数据进行模型模拟,因为模型模拟可以产生有关自变量对应变量影响的系列信息,并建立两类变量之间的数—力关系,从而为技术分析、技术控制和技术化提出预测,为运动损伤、康复手段的选择提供方案。 3.运动器系的力学负荷、负荷分布和负荷能力以及运动器官、组织和系统的材料力学是预防生物力学的基础。重力、支持力、相互作用力、介质阻力以及摩擦力可作为对运动器系的负荷。通常使用但并未充分证明是否可靠的指标有力、加速度、力矩、力梯度以及冲量、角冲量和它们的持续时间。所谓“”值也只是相对*限值。人体机能代偿能力的储备性决定了值是不可计测的。近年来关于运动器械,包括鞋、服装方面的生物力学研究已引起人们的重视,这将是一个很有吸引力且富有商业价值的领域。 4.测量技术、遥测技术和肌肉动力学测量技术(包括离体或在体肌肉动力学测量过程)将成为今后发展的重点,实验方法与理论模型相结合的综合研究日趋增加,主要趋向是遥测无线部分数据发射与数据采集装置的小型化和测量过程及结果分析的快速化。
三维动作捕捉也叫做三维动作追踪、三维运动追踪,是一种用于准确测量运动物体在三维空间运动状况的技术。它基于计算机图形学原理,通过排布在空间中的数个视频捕捉设备将带有跟踪设备的运动物体的运动状况以图像的形式记录下来,然后使计算机对该图像数据进行处理,得到不同时间计量单位上物体的不同点的空间坐标(x,y,z)。运动捕捉(Motion Capture或Mocap)在电影制作和游戏中,更多指的是匹配移动。当涉及到脸部、手或捕捉细微表情时,常常又被称作表演捕捉。动作捕捉系统主要应用于**、娱乐、体育、医疗领域,还可用于计算机视觉验证和机器人技术。在电影制作和视频游戏开发中,该技术可记录演员的动作,并将数字角色模型制作成2D或3D电脑动画。
机械式
电磁式
利用磁场的强度进行位置和方位跟踪。一般包括发射器、接收器、接口和计算机。优点是不存在遮挡问题,接收器与发射器之间允许有其他物体,也就允许用户走动。相对于其他运动捕捉设备,它的价格较低、精度适中、采样率高(可达120次/秒)、工作范围大(可达60m2),允许多个磁跟踪器跟踪整个身体运动,并且增加了跟踪运动的范围。缺点是易受电子设备、铁磁场材料的干扰,可能导致磁场变形引起误差。测量距离加大时误差增加,时间延迟交大(33ms),有小的抖动。
使用光学感知来确定对象的实时位置和方向。基于三角测量。光学式设备主要包括感光设备(接收器)、光源(发射器)以及用于信号处理的控制器。感光设备多种多样,例如普通摄像机、光敏二*管等。光源可以是环境光,也可以是结构光。为了防止可见光的干扰,通常采用红外线、激光等作为光源。由于光的传播速度很快,因此光学式设备显著的优点是速度快、具有较高的更新率和较低的延迟,较适合实时性强的场合,在小范围内工作效果好,其缺点是价格昂贵。