整合能力强、的实时3D运动捕捉分析系统,可集成各捕捉分析硬件,数据实时同步分析,用于涉及复杂运动分析的临床、生物力学、神经控制和运动医学应用。
使用该系统您可以集成各种硬件,并实时同步动作分析所有方面: ·自定义解决方案,以确保您实现研究目标...... 确定哪种技术和配置对于您的独特需的 ·集成市面上任何动作捕捉分析硬件,以利用每种技术的优势,确保性比价。
为什么选择该系统? -集各家之长为我所用,系统化的数据及分析、整合
我们的方案装置支持从骨科到运动机能学、运动科学、运动训练、力量与调节和运动医学的生命科学研究。功能包括: 多种可视化方法,以有效的方式显示您需要的数据,包括文本;条形图或时间序列图;动画;或 3D 可视化。 无需编程即可从下拉菜单中获取原始和处理过的数据,例如运动学和动力学。用户定义的公式和脚本允许对步态分析、平衡、伸手和抓握等进行特定于应用程序的分析。 各种生物力学建模功能,包括自定义关节中心定义和局部坐标系的能力。支持标准方法,例如国际生物力学协会 (ISB) 的建议和用户定义的模型。可以跟踪、分析和可视化手、足和脊柱的各个骨骼。 CT-MRI 配准,用于创建具有特定主题骨骼几何形状的 3D 渲染。解剖标志可以从扫描中自动提取并用于定义生物力学模型。 集成肌肉建模,使用用户定义或导入的 OpenSim 模型,直接从运动捕捉数据中可视化和分析肌肉力和力矩。 支持多种运动捕捉技术,包括相机、惯性和电磁传感器。多种运动学技术可以组合成一个实时混合运动捕捉系统,以同时利用每种技术的优势。
人体运动源于神经、肌肉和骨骼系统之间的协调互动。尽管了解运动神经肌肉和肌肉骨骼功能的潜在机制,但目前还没有对复合神经肌肉骨骼系统中神经机械相互作用的相关实验理解。这是理解人类运动的主要挑战。 为了解决这个问题,MotionMonitor开发了综合多尺度建模平台,包括肌肉、骨骼和神经模型等等。我们使用**的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。我们开发了由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力qian所未有,因此将为了解神经肌肉/骨科ji病的病因、诊断和治liao开辟新的途径。
动作捕捉可以将演员的动作转换到数字角色上。使用追踪摄影机的捕捉系统(无论有无追踪标记)都可以被称为是“光学捕捉”,而测量惯性或者机械动作的系统就叫做“非光学”。后者的一个例子是SethRogan在《保罗》中扮演外星人时使用的XSensMVN惯性捕捉套装。近也出现了一些其他的动作捕捉技术,例如LeapMotion的手指追踪深度摄影系统和MYO腕带,后者能够检测出手臂和手腕的肌肉活动。Google的ProjectTango主要用于测绘,但它也配有类似于Kinect的深度传感器,所以它也有进行动作捕捉的能力。
在捕捉的过程中很难预计演员的动作转换到动画角色上的效果,所以经常会用到JamesCameron为《阿凡达》开发的“虚拟拍摄”(virtualcinematography)技术。简单来说这就是实时显示演员对应的数字角色(在虚拟场景),这样的话导演就可以看到动画角色的粗略“表演”。这种技术需要大量的计算,但是现在的计算机和显卡的计算速度足以胜任这项工作