从丰富分析工具集合中生成的数据可立即通过所有数据输出的图形显示进行回放。令人惊叹的3D计算机渲染对象动画可以被视为骨架、简笔画或人形。集成使用市场上广泛硬件实现对人体运动、大脑活动、眼球运动、肌肉募集和作用在身体上的外力实时测量。 MotionMonitor可以集成和准确定位市场上运动、运动所有主流厂家硬件,数据完全同步。确保您选择的组件协同工作,并使用的计算机渲染和图形显示实时呈现。数据输出包括关节力和力矩,以及从虚拟环境同步接收的用户定义变量,以及所有运动和动力学数据,包括用自上而下或自下而上的逆动力学模型计算的联合力和矩。为您独特的研究需求提供、系统化、高质量的数据。 数据可在不需要编程的直观下拉菜单中使用。用户可编写脚本定义额外的数据和事件,并与统计模块一起扩展固有功能。
据您的需求量身定制的方案帮助您确定合适的motionmonitor™系统配置(台式机或各种便携式笔记本配置中选择)
我们帮助您应用选择、配置和测试佳运动学技术或技术混合、组合。 包括电磁跟踪器、莫尔相位跟踪器、惯性测量单元、无标记光学相机、主动光学相机、被动光学捕捉相机、无源光学相机等等
我们帮助您选择并集成外围系统,确保实现您独特的目标。 各种捕捉相机、位置跟踪器、EMG(肌电图)、测力台、仪器式跑步机、仪器式楼梯、手传感器、EEG脑电图、定量脑电图(quantitative EEG,qEEG)系统、数字视频、事件标记和其他模拟设备、虚拟现实和触觉设备等等。
我们进行现场安装和培训,旨在专注于您的特定应用,目标是收集有意义的数据。
人体运动源于神经、肌肉和骨骼系统之间的协调互动。尽管了解运动神经肌肉和肌肉骨骼功能的潜在机制,但目前还没有对复合神经肌肉骨骼系统中神经机械相互作用的相关实验理解。这是理解人类运动的主要挑战。 为了解决这个问题,MotionMonitor开发了综合多尺度建模平台,包括肌肉、骨骼和神经模型等等。我们使用**的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。我们开发了由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力qian所未有,因此将为了解神经肌肉/骨科ji病的病因、诊断和治liao开辟新的途径。
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
小脑对达成运动目标有重要的作用,体现在其对主动肌及拮抗肌的时间安排上:当个体想要通过运动达到目标时,主动肌爆发,拮抗肌被抑制,而抵达目标后,不需要再运动,拮抗肌的抑制被解除。换个角度看,预期(如预期刺激何时会到来)和时间控制(肌肉的激活与抑制的时间序列)对协调运动来说是非常关键的。此外,小脑蚓部对涉及轴向肌肉(控制身体躯干的肌肉)的协调功能尤为重要,这一区域对酒精的作用尤其敏感。
基底神经节能够帮助各种运动计划协调冲突,在未选定出的运动计划前,能够保持皮质表征激活而不引起肌肉活动,随着计划的筛选,基底神经节会减弱特定的神经元的抑制,使运动计划被执行。