美国motionmonitorTM 一站式动作实时捕捉与多源数据完全实时同步分析系统
使用该系统您可以集成各种硬件,并实时同步动作分析所有方面: ·自定义解决方案,以确保您实现研究目标...... 确定哪种技术和配置对于您的独特需的 ·集成市面上任何动作捕捉分析硬件,以利用每种技术的优势,确保性比价。
该系统是动作运动捕捉分析业界集成能力强的平台,包含但不于如下品牌: - 美国Ascension的 trakSTAR位置跟踪器 - Polhemus 的 Fastrak位置跟踪器 - Polhemus 的Polhemus 的Patriot位置跟踪器 - Polhemus 的Liberty 位置跟踪器 - Polhemus 的G4位置跟踪器 - Motion Analysis Corp的Haw动作捕捉相机 - Motion Analysis Corp的Eagle动作捕捉相机 - Motion Analysis Corp的Osprey 动作捕捉相机 - Motion Analysis Corp的Kestrel 动作捕捉相机 - Qualisys 的 Oqus动作捕捉相机 - Qualisys 的 Miqus相机 - VICON 的 Vero相机 - VICON 的 Bonita相机 - VICON 的 Vantage相机 - VICON 的 T 系列相机 - VICON 的 MX 相机 - Natural Point 的 Optitrak Flex 动作捕捉相机 - Natural Point 的 OPrime 动作捕捉相机 - PhaseSpace 的 Impulse 和 Impulse2动作捕捉手套、相机和捕捉系统 - Phoenix Technologies Incorporated 的 Visualeyez 3D动作捕捉系统 - Northern Digital 的 Optotrak 3020 和 Certus - Metria Innovation 的 MPT 莫尔相位跟踪系统 - Xsens惯性测量单元 - Delsys惯性测量单元 - APDM惯性测量单元 - InterSense惯性测量单元 - Bertec测力台 - AMTI 测力台 - Kistler 测力台 - Bertec仪表式楼梯 - AMTI 仪表式楼梯 -bertec仪表式跑步机(提供跑步机的实时动态控制) -ATI微型称重传感器 -AMTI微型称重传感器 -Bertec 微型称重传感器
我们的方案装置支持从骨科到运动机能学、运动科学、运动训练、力量与调节和运动医学的生命科学研究。功能包括: 多种可视化方法,以有效的方式显示您需要的数据,包括文本;条形图或时间序列图;动画;或 3D 可视化。 无需编程即可从下拉菜单中获取原始和处理过的数据,例如运动学和动力学。用户定义的公式和脚本允许对步态分析、平衡、伸手和抓握等进行特定于应用程序的分析。 各种生物力学建模功能,包括自定义关节中心定义和局部坐标系的能力。支持标准方法,例如国际生物力学协会 (ISB) 的建议和用户定义的模型。可以跟踪、分析和可视化手、足和脊柱的各个骨骼。 CT-MRI 配准,用于创建具有特定主题骨骼几何形状的 3D 渲染。解剖标志可以从扫描中自动提取并用于定义生物力学模型。 集成肌肉建模,使用用户定义或导入的 OpenSim 模型,直接从运动捕捉数据中可视化和分析肌肉力和力矩。 支持多种运动捕捉技术,包括相机、惯性和电磁传感器。多种运动学技术可以组合成一个实时混合运动捕捉系统,以同时利用每种技术的优势。
人体运动源于神经、肌肉和骨骼系统之间的协调互动。尽管了解运动神经肌肉和肌肉骨骼功能的潜在机制,但目前还没有对复合神经肌肉骨骼系统中神经机械相互作用的相关实验理解。这是理解人类运动的主要挑战。 为了解决这个问题,MotionMonitor开发了综合多尺度建模平台,包括肌肉、骨骼和神经模型等等。我们使用**的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。我们开发了由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力qian所未有,因此将为了解神经肌肉/骨科ji病的病因、诊断和治liao开辟新的途径。
整合升级Noraxon厂家的 DTS EMG,动作捕捉分析设备整合升级,人体运动生物力学分析软件系统,运动力学人多源数据采集同步,整合升级Polhemus G4位置跟踪器,整合升级AMTI 测力台,整合升级Motion Analysis CorpHaw动作捕捉相机,运动生物力学数据同步采集分析系统,整合升级Kistler 测力台,各运动力学设备整合服务
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
18世纪已出现;对猫在空中转体现象的实验和理论研究。运动生物力学,作为一门学科是20世纪60年代在体育运动、计算技术和实验技术蓬勃发展的推动下形成的。70年代中H.哈兹将人体的神经、肌肉、骨骼三大系统作为研究对象,利用复杂的数学模型进行数值计算,以解释基本的实验现象。T.R.凯恩将描述人体运动的坐标区分为:内变量和外变量,前者描述肢体的相对运动,为可控变量;后者描述人体的整体运动,由动力学方程确定。这种简化的研究方法有可能将力学原理直接用于人体实际运动的仿真和理论分析。由于生物体存在个体之间的差异性,实验研究在运动生物力学中占有特殊重要地位。实验运动生物力学利用高速摄影和计算机解析、光电计时器、加速度计、关节角变化、肌电仪和测力台等,工具量测人体运动过程中,各环节的运动学参数,以及外力和内力的变化规律。 在实践中,运动生物力学主要用于确定各专项体育运动的技术原理,作为运动员的技术诊断和改进训练方法的理论依据。此外,运动生物力学在运动创伤的防治,运动和康复器械的改进,仿生机械。如:步行机器人的设计等方面,也有重要作用。同时还为运动员选材提供了依据。