我们帮助您应用选择、配置和测试佳运动学技术或技术混合、组合。 包括电磁跟踪器、莫尔相位跟踪器、惯性测量单元、无标记光学相机、主动光学相机、被动光学捕捉相机、无源光学相机等等
帮助科学家解决神经系统、感觉和肌肉骨骼系统以及身体在物理中的运动之间的功能联系问题
神经科学和运动控制的研究受益于内置于我们方案的各种硬件和分析。 使用任何 Tobii 头戴式眼动追踪系统来捕捉与其他数据同步的实时 3D 眼动数据。分析视线交叉点。 使用 Biosemi 或 AntNeuro 硬件捕获 EEG 数据。适用于坐姿、站立和活跃的任务。根据其他运动学数据在 EEG 数据中创建用户定义的兴趣点。 实时呈现视觉、听觉和触觉提示。可以使用简单的几何形状、条形图或时间序列图或特定于应用程序的视觉效果(如红绿灯)以多种方式呈现用户定义的视觉提示。 使用 监视器r 与 Unity 和 World Viz 的双向通信将视觉反馈扩展到虚拟现实。 3D 可视化可以以多种方式呈现。一些例子包括: 手部实验室:专为上肢研究设计的立体屏幕和桁架系统。为主体提供与屏幕上或屏幕前呈现的 3D 虚拟对象进行交互的能力。 沉浸式显示器:一个完整的硬件和软件解决方案,当手臂的可视化被隐藏或扰动时,使用同位半镜屏幕进行研究。 综合研究环境系统 (IRES):与 Bertec 合作创建的研究质量环境。配备带 3D 动作捕捉系统和仪表跑步机的沉浸式 VR 圆顶。
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
关于运动控制,帕金森氏症是个熟悉的词语。帕金森氏症的表现是肌肉僵直、身体姿势和自主运动产生障碍,即不能够产生自主运动(常常是动作扭曲变形、缺乏灵活性)。研究发现,帕金森氏症与黑质(黑质是脑干的核团,是基底神经节的一部分)坏死有关。黑质损伤使得多巴胺无法正常生产,而多巴胺是兴奋性神经递质,多巴胺的耗竭、基底神经节的输出会对大脑皮质运动组织产生持续抑制,从而抑制了运动。
运动系统的结构
运动是在肌肉的状态变化中完成的。肌肉由弹性纤维组成,弹性纤维与骨骼在关节处相连,通常会组成拮抗的一对,使得效应器(身体可以运动的部分)收缩或伸展:如果要产生运动,就会有一个兴奋性信号传递给主动肌,一个抑制信号传递给拮抗肌(否则拮抗肌会将主动肌拉回到原始的位置)。
按照运动层级理论,使人运动的神经系统也是有层级的,层的是脊髓,如膝跳反射就是脊髓维持身体姿势稳定的技能,即使没有神经控制,也依然能够产生膝跳反射。
较的系统,如通过锥体系(即皮质脊髓束,起始于皮质,终止于延髓椎体)或锥体外系(脑干中能够直接投射下行纤维的通路,往往起始于脑干中的核团)控制肌肉运动的部分。其中,锥体系发出信号的,是控制运动的初级运动皮质;而锥体外系,如基底神经节(五个核团的总称),尾状核和壳核负责信息输入,苍白球内侧部分和黑质的一部分负责信息输出。像皮质脊髓束这样的通路,是近的进化的产物,只在哺乳动物中出现,给哺乳动物带来了很大的灵活性(不用仅仅靠简单反射活动来行动)。
此外,躯体特定区的表征是严格限制与身体一侧的,每个大脑半球主要控制身体对侧的运动,但小脑是支配身体同侧的运动