我们帮助您应用选择、配置和测试佳运动学技术或技术混合、组合。 包括电磁跟踪器、莫尔相位跟踪器、惯性测量单元、无标记光学相机、主动光学相机、被动光学捕捉相机、无源光学相机等等
我们进行现场安装和培训,旨在专注于您的特定应用,目标是收集有意义的数据。
我们的方案装置支持从骨科到运动机能学、运动科学、运动训练、力量与调节和运动医学的生命科学研究。功能包括: 多种可视化方法,以有效的方式显示您需要的数据,包括文本;条形图或时间序列图;动画;或 3D 可视化。 无需编程即可从下拉菜单中获取原始和处理过的数据,例如运动学和动力学。用户定义的公式和脚本允许对步态分析、平衡、伸手和抓握等进行特定于应用程序的分析。 各种生物力学建模功能,包括自定义关节中心定义和局部坐标系的能力。支持标准方法,例如国际生物力学协会 (ISB) 的建议和用户定义的模型。可以跟踪、分析和可视化手、足和脊柱的各个骨骼。 CT-MRI 配准,用于创建具有特定主题骨骼几何形状的 3D 渲染。解剖标志可以从扫描中自动提取并用于定义生物力学模型。 集成肌肉建模,使用用户定义或导入的 OpenSim 模型,直接从运动捕捉数据中可视化和分析肌肉力和力矩。 支持多种运动捕捉技术,包括相机、惯性和电磁传感器。多种运动学技术可以组合成一个实时混合运动捕捉系统,以同时利用每种技术的优势。
帮助科学家解决神经系统、感觉和肌肉骨骼系统以及身体在物理中的运动之间的功能联系问题
神经科学和运动控制的研究受益于内置于我们方案的各种硬件和分析。 使用任何 Tobii 头戴式眼动追踪系统来捕捉与其他数据同步的实时 3D 眼动数据。分析视线交叉点。 使用 Biosemi 或 AntNeuro 硬件捕获 EEG 数据。适用于坐姿、站立和活跃的任务。根据其他运动学数据在 EEG 数据中创建用户定义的兴趣点。 实时呈现视觉、听觉和触觉提示。可以使用简单的几何形状、条形图或时间序列图或特定于应用程序的视觉效果(如红绿灯)以多种方式呈现用户定义的视觉提示。 使用 监视器r 与 Unity 和 World Viz 的双向通信将视觉反馈扩展到虚拟现实。 3D 可视化可以以多种方式呈现。一些例子包括: 手部实验室:专为上肢研究设计的立体屏幕和桁架系统。为主体提供与屏幕上或屏幕前呈现的 3D 虚拟对象进行交互的能力。 沉浸式显示器:一个完整的硬件和软件解决方案,当手臂的可视化被隐藏或扰动时,使用同位半镜屏幕进行研究。 综合研究环境系统 (IRES):与 Bertec 合作创建的研究质量环境。配备带 3D 动作捕捉系统和仪表跑步机的沉浸式 VR 圆顶。
我公司另外同一站式细胞组织材料生物力学和生物打印等生物医学工程科研服务-10年经验支持,
整合升级Motion Analysis CorpOsprey 动作捕捉相机,整合升级Motion Analysis CorpHaw动作捕捉相机,动作捕捉多源数据同步系统,整合升级AMTI微型称重传感器,运动生物力学数据同步采集分析系统,运动力学整合升级服务,整合升级BioSemiActiveTwo 系统,整合升级MindMedia NeXus-32 定量脑电图(quantitative EEG, qEEG)系统,各厂家运动力学设备数据同步服务,同步动作捕捉数据系统
简单的运动激活的可能只是某一侧的感觉运动皮质,而复杂的运动激活的往往是双侧的,双侧的激活可能与运动计划的有关(双侧的分布显示了很多潜在的动作计划)。
不过内外部控制并不是被严格区分的,很多协调的动作是由多种来源的信息指导的。
内外源运动的区别,也体现在新手到专家的转变上。在刚学习一项运动时(新手),我们更多的依赖外界刺激做出动作调整,且往往是调整下一阶段的动作,此时,PET(正电子断层扫描)研究发现,外侧运动前区及前额叶区域的血流量发生了相应的变化;当我们熟练一项运动后,更多的是靠内源性信息指导,此时较少依赖外界的反馈(太过熟练了),更多的靠着自己内部加工来即时调整动作,在脑区中,辅助运动区和海马的血流量增加