为什么选择该系统? -集各家之长为我所用,系统化的数据及分析、整合
人体运动源于神经、肌肉和骨骼系统之间的协调互动。尽管了解运动神经肌肉和肌肉骨骼功能的潜在机制,但目前还没有对复合神经肌肉骨骼系统中神经机械相互作用的相关实验理解。这是理解人类运动的主要挑战。 为了解决这个问题,MotionMonitor开发了综合多尺度建模平台,包括肌肉、骨骼和神经模型等等。我们使用**的高密度肌电图 (HD-EMG) 与盲源分离相结合,将干扰 HD-EMG 信号识别到由同时控制许多肌肉纤维的脊髓运动神经元放电的尖峰列车集合中。我们开发了由体内运动神经元放电驱动的多尺度肌肉骨骼建模公式,用于计算所得肌肉骨骼力的高保真估计。这将使神经控制的肌肉组织如何与骨骼组织相互作用的分析能力qian所未有,因此将为了解神经肌肉/骨科ji病的病因、诊断和治liao开辟新的途径。
动作捕捉技术
反光标记点既不会接收无线信号也不会向外发射任何无线信号,它的表面涂抹了一种特殊荧光材料,可以很好地让红外摄像头识别到并反射回高质量的图像信号。
基于红外摄像头的光学步态动作捕捉系统优点是技术成熟度高,采样频率高,加之目前的高性能计算机数据处理速度*快所以延迟很低,且精度很高,使用范围广,应用领域众多。主要缺点是对光照特别敏感,不能在光变化较大的环境下使用,周围不能有和光学标记点相近的物体或光斑,所以光学步态捕捉一般只在室内使用。由于摄像头的视场角有局限性,且人在运动时有的标记点很容易受到其他物体及自身的遮挡,这就造成被遮挡部位数据的丢失。后期数据处理工作量很大,由于数据量大且需要处理丢失、跳帧等问题,需要较长的后期处理时间。缺点还在于需要架设相机,相机一般架设到钢架结构上,这就造成使用场景一般比较固定,不能轻易的挪动。一般的场景至少需要6个摄像头,如果需要追踪更大的场景,需要的摄像头数量高达几十个,且单个摄像头价格十分价贵,比如Vicon公司生产的单个摄像头价格高达十万元,这就造成红外光学式步态捕捉还是应用到科学研究方面,无法走进大众。
1.2.1.2基于3D深度摄像头的动作捕捉
随着3D深度相机技术的成熟,有许多研究者开始研究基于深度相机的动作捕捉系统[5][6]。3D深度摄像头与2D摄像头的区别在于,除了能够获取平面图像外还可以获得深度信息。3D深度技术目前广泛应用在人体步态识别、三维重建、SLAM等领域。目前主流的3D深度摄像头的技术路线有:(1)双目立体视觉;(2)飞行时间(Timeoffly,TOF);(3)结构光技术等。
表1-1 3D深度摄像头方案对比
基本原理是首先找到图像中移动的物体,然后会对移动的物体进行深度评估,识别出人体的部位,然后将其从背景环境中分割出来。分割之后要做的工作就是模式匹配,将其匹配到骨骼系统上。算法流程如图1-7所示。
1.2.1.3基于2D摄像头的动作捕捉
基于MEMS惯性传感器的动作捕捉系统在各个领域都有应用,包括虚拟现实[7]、运动训练[8]、生物医学工程[9]和康复[10][11]。因为它们体积小、重量轻、价格合理[12][13][14]。
惯性传感器主要包括加速度计、陀螺仪、磁力计。其中加速度计、陀螺仪、磁力计多采用MEMS形式,所以称之为MEMS惯性传感器。三轴加速度计可以测量载体的三个轴向上的加速度,是一矢量,通过加速度我们也可以计算出载体静止时的倾角。三轴陀螺仪可以测量出载体的三个轴向上角速度,通过对角速度积分我们可以得到角度, 。三轴磁力计可以测量出周围的磁场强度及与地球磁场的夹角。通过融合加速度、角速度、磁力值的数据我们可以精准的得到载体的旋转。融合后的数据一般用四元数或欧拉角来表示。其中四元数形式如 ,欧拉角包含俯仰角(Pitch)、横滚角(Roll)、偏航角(Yaw)。得到载体的旋转后再拟合各个骨骼的运动,从而计算出穿戴部位的运动姿态。通过对加速度、角速度的积分可以测量出穿戴者的步速、步距、步长等参数。上的MEMS惯性动作捕捉系统研发生产公司国外有荷兰Xsens、国内的北京孚心科技公司等。综述其原理如图1-11所示。
1.2.1.5其他技术路线
机械式动作捕捉依靠穿戴在人身体的机械装置来测量关节角度以及位移。人体运动带动机械装置的运动,从机械装置上的角度传感器可以知道运动角度,根据角度和机械部位的长度从而计算出移动位移。这一技术早出现在20世纪,由于机械结构的笨重,在步态分析方面机械动作捕捉早已退出发展的主流。但利用机械外骨骼的搬运发展成了主流。其形状如图1-12所示。