世联博研(北京)科技有限公司 主营:Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
服务电话: 010-67529703
主营产品: Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
联系我们

加拿大fusinstruments 品牌RK-100磁共振成像影像导航的血脑屏障聚焦超声系统,RK-100磁共振引导的血脑屏障聚焦超声系统

  • 如果您对该产品感兴趣的话,可以
  • 产品名称:加拿大fusinstruments 品牌RK-100磁共振成像影像导航的血脑屏障聚焦超声系统,RK-100磁共振引导的血脑屏障聚焦超声系统
  • 产品型号:RK-100
  • 产品展商:加拿大fusinstruments
  • 产品文档:无相关文档
简单介绍

这一可兼容核磁共振成像的影像导航聚焦超声系统由一套电脑控制的高精度三维定位系统和高能的聚焦超声转换器组成。定位系统能够精准地向毫米大小的区域输送聚焦超声能量到软组织。这一系统专门用于研究从小到大的动物模型,从而探究超声-组织相互作用,在用于人体之前评价**方法的**性,可匹配临床MR和CT扫描仪从而完成影像导航的**计划和递送。该系统完全无磁性,因而可以与高场核磁成像仪共同工作,还可匹配X射线CT成像。 设备暂时性开放血脑屏障的效果非常好, 不会长期破坏人体的血脑屏障,大约12小时后,血脑屏障即恢复完好,重新开始为大脑阻挡有害物质

产品描述
 

RK-100磁共振成像影像导航的血脑屏障聚焦超声系统

这一可兼容核磁共振成像的影像导航聚焦超声系统由一套电脑控制的高精度三维定位系统和高能的聚焦超声转换器组成。

定位系统能够精准地向毫米大小的区域输送聚焦超声能量到软组织。这一系统专门用于研究从小到大的动物模型,从而探究超声-组织相互作用,在用于人体之前评价**方法的**性,可匹配临床MRCT扫描仪从而完成影像导航的**计划和递送。该系统完全无磁性,因而可以与高场核磁成像仪共同工作,还可匹配X射线CT成像。

这一无磁性定位系统能够在成像时沿着任意3D路径调动转换器;超声剂量的递送用通过MRI或者CT的影像实现,具体依赖系统的配置;实时监控前进方向,转换器接收反射的电能从而保证一致的能量传输。

 

该系统能够递送从软组织热凝结的高能连续声波降解,到适用于例如组织裂解、**传输或者血管透化等用途的脉冲声波降解所需的剂量。因为该系统设计用于研究,所以非常灵活,用户可以根据需要自由设置。

 

磁共振引导聚焦超声助科学家突破血脑屏障

RK-100磁共振引导的血脑屏障聚焦超声系统

背景:

血脑屏障是大脑的内皮细胞,这些细胞形成的多层膜紧紧包裹住大脑中的所有血管,阻挡**、病毒和其他有害物质进入大脑。但是,血脑屏障对大多数**具有屏蔽作用。当医生在**脑部肿瘤或神经系统**时,只有约25%的**能够进入大脑,这使得**变得异常困难。森尼布鲁克保健中心利用磁共振引导聚焦超声技术,在不进行开颅手术的情况下突破了人体的血脑屏障,从而使得有效**能够顺利进入脑部,达到**的效果。更加令人鼓舞的是,该技术并不会长期破坏人体的血脑屏障。大约12小时后,血脑屏障即恢复完好,重新开始为大脑阻挡有害物质。

   磁共振引导聚焦超声设备突破了大脑的血脑屏障,从而能够在不进行手术的情况下,提高多种脑部**的**水平,例如脑肿瘤、帕金森氏症,和阿尔茨海默氏症等。此举对神经科学领域意义重大。

原理与应用步骤:

研究人员首先为患脑癌患者注射一种化疗**的微泡,微泡随后扩散至向脑部血管中。接下来,患者配戴立体定位神经系统的超声波发射器,研究人员借助磁共振引导聚焦超声设备精准发射高强度聚焦超声束,从而引起微泡振动迫使构成血脑屏障的内皮细胞分开。血液中的化疗**便可从间隙中穿过,到达肿瘤细胞附近

    运用磁共振引导聚焦超声设备暂时性开放血脑屏障的效果非常好, 不会长期破坏人体的血脑屏障,大约12小时后,血脑屏障即恢复完好,重新开始为大脑阻挡有害物质。这一划时代的突破将会为绝望的病人带来新的希望.

 

应用文献:

 

Studies using FUS Instruments’ Systems

Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7.

Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439.

Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745.

Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087.

Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood− brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132.

Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100.
.
Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049.
.
Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052.

Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899.

Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428.

Jordão, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29.

Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in ***** mice.” Brain stimulation 7.2 (2013): 304-307.

Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.

 

Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.

 

Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.

 

Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.

 

Jordão, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.

 


Blood-Brain Barrier Disruption Studies

Leinenga, Gerhard, and Jürgen Götz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.

 

Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.

 

McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.

 

Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725.
.

Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.

 

Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090.
.


Relevant Review Papers

Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.

 

O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396.

 

产品留言
标题
联系人
联系电话
内容
验证码
点击换一张
注:1.可以使用快捷键Alt+S或Ctrl+Enter发送信息!
2.如有必要,请您留下您的详细联系方式!
Copyright@ 2003-2024  世联博研(北京)科技有限公司版权所有      电话:13466675923 传真: 地址:北京市海淀区西三旗上奥世纪中心A座9层906 邮编:100096