世联博研(北京)科技有限公司 主营:Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
服务电话: 010-67529703
主营产品: Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
联系我们

FLEXCELL&aimbiotech 品牌3D Cell Culture Chips,微流控3D细胞培养芯片

  • 如果您对该产品感兴趣的话,可以
  • 产品名称:FLEXCELL&aimbiotech 品牌3D Cell Culture Chips,微流控3D细胞培养芯片
  • 产品型号:
  • 产品展商:FLEXCELL&aimbiotech
  • 产品文档:无相关文档
简单介绍

微流控3 D细胞培养芯片在多种实验中发挥作用,包括细胞迁移, 单型的或组织型细胞共培养, 细胞入侵及血管生成等。 1.AIM Biotech公司的微流控3 D细胞培养芯片中心是一个水凝胶通道,两侧是培养基通道 2.AIM Biotech生物芯片具有多个优势:气体渗透性, 标准显微镜载片规格(75毫米X25毫米),光学清晰度高。同时可以与相差显微镜, 荧光显微镜,共焦显微镜兼容使用 3.Flexcell®的HiQ Flowmate®双注射泵具有独立的液流驱动系统,能够持续提供稳定, 脉冲的, 连续的和脉动式流模式。 4.Flexcell®公司的Collagel®或Thermacol®水凝胶套件可以用来创建3 D水凝胶。 5.芯片允许用户同时在离散的3 D和2 D隔间培养不同类型的细胞。 6.芯片可用于研究流经3 D凝胶地带的间隙流。

产品描述

微流控3 D细胞培养芯片在多种实验中发挥作用,包括细胞迁移单型的或组织型细胞共培养细胞入侵及血管生成等。


1.      AIM Biotech公司的微流控3D细胞培养芯片中心是一个水凝胶通道,两侧是培养基通道。

2.      AIM Biotech生物芯片具有多个优势:气体渗透性, 标准显微镜载片规格(75毫米X 25毫米),光学清晰度高。同时可以与相差显微镜, 荧光显微镜,共焦显微镜兼容使用。

3.      Flexcell®的HiQ Flowmate®双注射泵具有独立的液流驱动系统,能够持续提供稳定, 脉冲的, 连续的和脉动式流模式。

4.      Flexcell®公司的Collagel®或Thermacol®水凝胶套件可以用来创建3 D水凝胶。

5.      芯片允许用户同时在离散的3 D和2 D隔间培养不同类型的细胞。

芯片可用于研究流经3 D凝胶地带的间隙流。


AIM Biotech 3D细胞培养芯片的应用

1.      粘附细胞和非粘附细胞的迁移

2.      细胞入侵

3.      细胞球体分散

4.      外渗和内渗

5.      神经突和神经干细胞分化

Run multiple assays, including cell migration, co-culture, cell invasion, and angiogenesis, all at the microfluidic level using AIM Biotech 3D cell culture chips and Flexcell® kits for creating type I collgen gels.

Chipmate kits come in various sizes and with different components to help users get the most out of each kit in their research experiments.

Kits are available with one of the following components:
  • AIM Biotech's 3D Cell Culture Chip with a central hydrogel channel flanked by two media channels (see Fig. 1). Learn more here. 
  • Flexcell® Thermacol®/Collagel® Kits for creating 3D type I collagen hydrogels. Learn more here. 
  • Flexcell® HiQ Flowmate® Dual Syringe Pump with independent fluid drive system capable of constant steady, pulsatile, continuous, and oscillating flow modes. Learn more here. 
  • AIM Biotech Microtiter Plate Holder with cover. Each holder holds up to three AIM Biotech chips. Click here for the product information sheet. 
  • AIM Biotech Luer Connectors for modular expansion. Click here for the product information sheet. 
Chipmate
Figure 1: Close-up of the AIM Biotech 3D Cell Culture Chip with the central hydrogel channel and two media channels. The chip can be used for multiple assays including instersitial fluid flow, co-culture, and cell migration.



Key publications

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD.  Lab Chip, 2008, 8, 1468-1477.
  2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S.  Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD.  Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD.   Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD.  Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153 
  7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD.  Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD.  Proceedings of the National Academy of Sciences, pp. 201417115, 2014

Publications

  1. A microfluidic platform for studying the effects of small temperature gradients in incubator environment. Das SK, Chung S, Zervantonakis I, Atnafu J, Kamm RD. Biomicrofluidics, 2008, 2, 03106.
  2. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD.  FASEB J, 2009, 23(7):2155-64.
  3. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Chung S, Sudo R, Zervantonakis I, Rimchala T, Kamm RD.  Adv Mat,Dec 18;21(47):4863-7. doi: 10.1002/adma.200901727.
  4. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. Intern J Micro-Nano Scale Transport, 1(1): 27-36, 2010.
  5. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo S, Vickerman V, Zervantonakis IK, Kamm RD.  Annals Biomed Engineering, 2010, DOI: 10.1007/s10439-010-9899-3.
  6. Determining cell fate transition probabilities to VEGF/Ang 1 levels: Relating computational modeling to microfluidic angiogenesis studies. Das A, Lauffenburger DA, Asada HH, Kamm RD.  Cellular and Molecular Bioengineering. 2010 Dec; 3(4):345-360.
  7. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD.  Lab Chip. 2011 Feb 7; 11 (3) :497-507. PMID:21107471.
  8. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD.  Biomicrofluidics. 2011 Mar 30; 5(1):13406. PMID:21522496.
  9. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Jeon JS, Chung S, Kamm RD, Charest JL. Biomed Microdevices. 2011 Apr; 13(2):325-33. PMID:21113663; PMC3117225.
  10. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc Natl Acad Sci U S A. 2011 Jul 5; 108 (27):11115-20. PMID:21690404; PMCID: PMC3131352.
  11. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, Sudo R, Kamm RD, Chung S.  Lab Chip. 2011 Jul 7; 11 (13) :2175-81. PMID:21617793.
  12. Sprouting angiogenesis under a chemical gradient regulated by interaction with endothelial monolayer in microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S.  Anal Chem. Epub 2011 Oct 10. PMID: 21985643.
  13. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, Kamm RD, Asada H.  PLoS One, 7(5), 2012. PMID: 22662145
  14. In vitro angiogenesis assay for the study of cell encapsulation therapy. Choong Kim, Seok Chung, Liu Yuchun, Min-Cheol Kim Jerry K. Y. Chan, H. Harry Asada and Roger D. Kamm.  Lab Chip, 2012, DOI:10.1039/C2LC40182G PMID: 22722695
  15. A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture under a Controlled Hypoxic Environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD.   Lab Chip, Nov 21;12(22):4855-63. doi: 10.1039/c2lc40306d. 
  16. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapali CR, Ozdinler PH, Pasquina L, Chung S, Varner J, DeValance S, Kamm R, Macklis JD.  Integr Biol, 4, 1398-1405, 2012, DOI: 10.1039/c2ib20019h
  17. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD.  PLoS ONE, 2012;7(12):e50582. doi: 10.1371/journal.pone.0050582. PMID: 23226527
  18. Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Lee E-S, Kamm RD, Kim J-H, Chung S.  Adv Healthc Mater. 2013 Jun;2(6):790-4. doi: 10.1002/adhm.201200320. Epub 2012 Nov 26. PMID: 23184641
  19. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, Kamm RD, Kim YJ, Chung S. Lab Chip. 2012 Oct 21;12(20):3861-5. PMID: 22903230
  20. A Three-Dimensional Microfluidic Tumor Cell Migration Assay to Screen the Effect of Anti-Migratory Drugs and Interstitial Flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R.  Microfluid Nanofluid, 2012,  DOI 10.1007/s10404-012-1104-6
  21. In vitro model of tumor cell extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS One. 2013;8(2):e56910. doi: 10.1371/journal.pone.0056910. Epub 2013 Feb 20. PMID: 23437268
  22. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr Biol (Camb). 2013 Sep 23; 5(10):1262-71. doi: 10.1039/c3ib40149a. PMID: 23995847
  23. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M.  Integr Biol (Camb), 2013, DOI: 10.1039/c3ib40082d.
  24. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13. PMID: 24151838
  25. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD.  Drug Discov Today. 2013 Dec 17. pii: S1359-6446(13)00424-8. doi: 10.1016/j.drudis.2013.12.006. [Epub ahead of print] PMID: 24361339
  26. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Charest JL, Moretti M, Kamm RD. Biomaterials. 2014 Mar;35(8):2454-61. doi: 10.1016/j.biomaterials.2013.11.050. Epub 2013 Dec 31. PMID: 24388382
  27. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C.  Mol Pharm. 2014 Jul 7;11(7):2022-9. doi: 10.1021/mp500054h. Epub 2014 Feb 24. PMID: 24533867 
  28. In Vitro Microvessel Growth and Remodeling within a Three-dimensional Microfluidic Environment. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Roger D. Kamm RD.  Cell Mol Bioeng. 2014 Mar 1;7(1):15-25. PMID: 24660039 
  29. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, Reibel JB, Tamayo P, Godfrey JT, Qian ZR, Page AN, Maciag K, Chan EM, Silkworth W, Labowsky MT, Rozhansky L, Mesirov JP, Gillanders WE, Ogino S, Hacohen N, Gaudet S, Eck MJ, Engelman JA, Corcoran RB, Wong KK, Hahn WC, Barbie DA. Cancer Discov. 2014 Apr;4(4):452-65. doi: 10.1158/2159-8290.CD-13-0646. Epub 2014 Jan 20.
  30. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD.  Integr Biol (Camb). 2014 May;6(5):555-63. doi: 10.1039/c3ib40267c. PMID: 24676392
  31. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, Lewis R, Daigh C, Hansen TD, Mann DA, Thomson JA, Griffith LG, Kamm RD, Schwartz MP, Murphy WL.  Stem Cell Rev. 2014 Jun;11(3):511-25 doi: 10.1007/s12015-014-9549-5 PMID: 25190668
  32. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE.  J Clin Invest. 2014 Dec;124(12):5411-23. doi: 10.1172/JCI75661. Epub 2014 Nov 3.
  33. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, Zhu SJ, Zhang Y Ercan D, Liao RG, Capelletti M, Zhou W, Hur W, Kim N, Sim T, Gaudet S, Barbie DA, Yeh JR, Yun CH, Hammerman PS, Mohammadi M, Jänne PA, Gray NS. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4869-77. doi: 10.1073/pnas.1403438111. Epub 2014 Oct 27.
  34. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm. Lab Chip. 2014 Dec 3;15(1):301-10. doi: 10.1039/c4lc00866a. PMID: 25370780
  35. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang TM, Tu TY, Penny HL, Wong SC, Kamm RD, Thiery JP.  Oncotarget 6 (28), 25295-25307, 2015
  36. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. J Bai, TY Tu, C Kim, JP Thiery, RD Kamm.  Oncotarget, 2015 Nov 3;6(34):36603-14. doi: 10.18632/oncotarget.5464.
  37. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Small. 2016 Feb;12(5):688. doi: 10.1002/smll.201670025.
  38. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong JS, Kamm RD, Huh D, Sohn LL, Chung S.  ScI Rep. 2015 Dec 21;5:18290. doi: 10.1038/srep18290.
  39. Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD.  Trends in Cancer, Volume 2, Issue 1, p6–19, January 2016.
产品留言
标题
联系人
联系电话
内容
验证码
点击换一张
注:1.可以使用快捷键Alt+S或Ctrl+Enter发送信息!
2.如有必要,请您留下您的详细联系方式!
Copyright@ 2003-2024  世联博研(北京)科技有限公司版权所有      电话:13466675923 传真: 地址:北京市海淀区西三旗上奥世纪中心A座9层906 邮编:100096