世联博研(北京)科技有限公司 主营:Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
服务电话: 010-67529703
主营产品: Flexcell细胞力学和regenhu细胞3D生物打印机销售技术服务: 美国Flexcell品牌FX-5000T细胞牵张应力加载培养系统,FX-5K细胞显微牵张应力加载培养系统,Tissue Train三维细胞组织培养与测试系统,FX-5000C三维细胞组织压应力加载培养系统,STR-4000细胞流体剪切应力加载培养系统,德国cellastix品牌Optical Stretcher高通量单细胞牵引应变与分析系统 Regenhu品牌3D discovery细胞友好型3D生物打印机,piuma细胞纳米压痕测试分析、aresis多点力学测试光镊,MagneTherm细胞肿瘤电磁热疗测试分析系统
联系我们

fus instruments品牌快速无创切除组织结构聚焦超声系统

  • 如果您对该产品感兴趣的话,可以
  • 产品名称:fus instruments品牌快速无创切除组织结构聚焦超声系统
  • 产品型号:RK-50
  • 产品展商:fusinstruments
  • 产品文档:无相关文档
简单介绍

RK-50:台式聚焦超声系统 这一聚焦超声系统能够完成定向大脑暴露,而不需要并发的成像。 RK-50是独立的全能型临床前系统,可以利用聚焦超声的各种用途。通过传统的立体定位方法的使用,RK-50能够透过啮齿类动物大脑的头盖骨向细小的结构发射**剂量的聚焦超声。该系统还能够自动栅格化一系列聚焦超声来覆盖任意大小的体积。其应用包括切除、血脑屏障毁坏和神经调制。

产品描述

产品介绍: 
 
RK-50:台式聚焦超声系统 
这一聚焦超声系统能够完成定向大脑暴露,而不需要并发的成像。 
RK-50是独立的全能型临床前系统,可以利用聚焦超声的各种用途。通过传统的立体定位方法的使用,RK-50能够透过啮齿类动物大脑的头盖骨向细小的结构发射**剂量的聚焦超声。该系统还能够自动栅格化一系列聚焦超声来覆盖任意大小的体积。其应用包括切除、血脑屏障毁坏和神经调制。

 

 
技术参数: 
· **快速的三维定位系统; 
· **计划软件帮助立体定位目标选择和暴露剂量控制(在配备的PC上运行); 
· 在线性、格栅和环形剂量暴露中多点定位都是切实可行的; 
· 聚集超声的剂量设定可以轻易地调控用于任何用途; 
· 利用校准的聚焦超声转换器可以调节到一定范围内的频率。 
 
RK-100:影像导航的聚焦超声系统 
这一可兼容核磁共振成像的影像导航聚焦超声系统由一套电脑控制的高精度三维定位系统和高能的聚焦超声转换器组成。 
定位系统能够精准地向毫米大小的区域输送聚焦超声能量到软组织。这一系统专门用于研究从小到大的动物模型,从而探究超声-组织相互作用,在用于人体之前评价**方法的**性,可匹配临床MR和CT扫描仪从而完成影像导航的**计划和递送。该系统完全无磁性,因而可以与高场核磁成像仪共同工作,还可匹配X射线CT成像。

 
这一无磁性定位系统能够在成像时沿着任意3D路径调动转换器;超声剂量的递送用通过MRI或者CT的影像实现,具体依赖系统的配置;实时监控前进方向,转换器接收反射的电能从而保证一致的能量传输。 
该系统能够递送从软组织热凝结的高能连续声波降解,到适用于例如组织裂解、**传输或者血管透化等用途的脉冲声波降解所需的剂量。因为该系统设计用于研究,所以非常灵活,用户可以根据需要自由设置。 


RK-300:小口径影像导航聚焦超声系统 
RK-300专门设计针对小型动物模型,特别适用于血脑屏障毁坏研究,它包括影像导航定位软件,一台电脑控制的高精度两轴定位系统和校准的聚焦超声转换器。RK-300是世界上**一款能够进行无创过高热、切除和血脑屏障开放等功能的临床前成像系统。 
http://www.fusinstruments.com/wp-content/uploads/2013/08/HIFU-Small-Bore-015.jpg

技术参数: 
· 校准的聚焦超声转换器可以提供750kHz到5MHz的基本频率(提供常用焦距); 
· 两轴空间定位(20mm行进,0.25mm精度); 
· 可提供脉冲和连续超声; 
· 基于影像的**计划软件; 
· 综合的无线电表面线圈; 
· 兼容孔径小至70mm。 

应用范围: 
1. 开放血脑屏障: 
无创开放血脑屏障是**定位入脑的有效方法,RK系列产品是**的临床前用聚焦超声技术开放血脑屏障的系统。
http://www.fusinstruments.com/wp-content/uploads/2013/08/BBBpic.png 
2. 切除 
聚焦超声技术能够快速无创切除组织结构,RK100能够在无论大还是小动物模型上完成组织切除。 
http://www.fusinstruments.com/wp-content/uploads/2013/08/Ablationpic.png 
3. 超高热 
温和的加热已经在过去数十年被证明能够使得肿瘤对放射和化疗敏感,并进而为热激活的脂质体和分子相互作用提供机会。配备核磁共振的RK产品能够在通过核磁共振反馈调节加热。
http://www.fusinstruments.com/wp-content/uploads/2013/08/Hyperthermiapic.png 
4. 基因**和声孔效应 
聚焦超声能量能够瞬时增加血管和细胞对分子化合物的通透性。RK系列产品能够传输必要的剂量达到这些生物学效应。
http://www.fusinstruments.com/wp-content/uploads/2013/08/Gene-Therapy-pic.png 
5. 空穴作用 
RK-100能够产生必要的压力以在体内生成空穴作用,从而造成组织裂解和分解。
http://www.fusinstruments.com/wp-content/uploads/2013/08/Cavitation-pic.png 
应用案例: 
1. 聚焦超声传输拉曼纳米粒子穿越血脑屏障:定向实验脑肿瘤的可能性


Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087.

 

在近红外范围内使用表面增强型拉曼散射能量进行纳米粒子的光谱映射是一项新兴的分子成像技术。我们使用核磁共振成像导航的跨颅聚焦超声技术,可逆的破坏大鼠内临近脑肿瘤边际的血脑屏障。胶质瘤细胞被发现吸收了50nm到120nm大小的拉曼散射纳米粒子。血脑屏障的破坏使得50或120nm的拉曼散射金纳米粒子可达到肿瘤区域。
因此,具有拉曼散射成像能力的纳米粒子能够通过核磁共振成像导航的跨颅聚焦超声技术被无创传输到肿瘤区域,这有着用于光学追踪恶性脑肿瘤侵袭前沿的药剂的可能性。 
 
图1:使用跨颅聚焦超声定向跨越血脑屏障传递金纳米粒子(GNP) 
 
图2:使用内化的金纳米粒子追踪GBM细胞

2. 小鼠模型的阿尔兹海默症:核磁共振成像导航的聚焦超声定位海马开放血脑屏障,并改善病理异常和行为 
Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.” Radiology 273.3 (2014): 736-745.
这个实验目的是为了证实反复定位海马体的核磁共振成像导航的聚焦超声**,能否调节阿尔兹海默症小鼠模型的病理异常、适应性和行为。 
结果表明,核磁共振成像导航的聚焦超声**能够改善阿尔兹海默症小鼠模型的空间记忆,这些改变可能是由减少淀粉体病理异常和增加的神经适应性导致的。 
 
图1. 核磁共振成像导航的聚焦超声诱导双边海马体的血脑屏障通透性 

图2. 经聚焦超声**的小鼠在Y迷宫中表现更好






Publications

Studies using FUS Instruments’ Systems

Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7.

Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439.

Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745.

Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087.

Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood− brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132.

Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100.
.
Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049.
.
Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052.

Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899.

Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428.

Jordão, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29.

Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in ***** mice.” Brain stimulation 7.2 (2013): 304-307.

Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.

 

Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.

 

Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.

 

Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.

 

Jordão, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.

 


Blood-Brain Barrier Disruption Studies

Leinenga, Gerhard, and Jürgen Götz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.

 

Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.

 

McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.

 

Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725.
.

Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.

 

Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090.
.


Relevant Review Papers

Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.

 

O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396.
.



产品留言
标题
联系人
联系电话
内容
验证码
点击换一张
注:1.可以使用快捷键Alt+S或Ctrl+Enter发送信息!
2.如有必要,请您留下您的详细联系方式!
Copyright@ 2003-2024  世联博研(北京)科技有限公司版权所有      电话:13466675923 传真: 地址:北京市海淀区西三旗上奥世纪中心A座9层906 邮编:100096